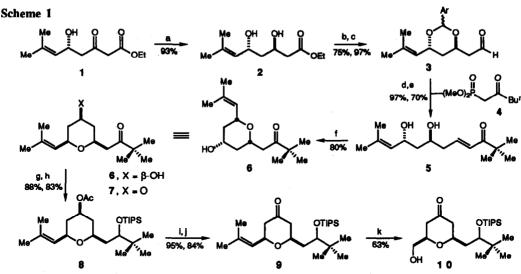

Control of Remote Enoate Geometry in the Bryostatins with a Tethered Horner-Wadsworth-Emmons Reagent

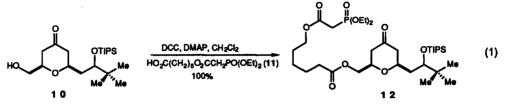
David A. Evans* and Erick M. Carreira¹

Department of Chemistry, Harvard University Cambridge, Massachusetts 02138 USA

Abstract: The stereochemistry of the exocyclic unsaturated ester at C_{13} of the bryostatins may be established with a tethered phosphonate reagent anchored to a proximal hydroxyl function at C_{16} of an advanced intermediate en route to the total syntheses of the bryostatins.


We have been engaged in activities directed towards the total synthesis of bryostatin $1.^2$ This fungal metabolite, whose structure was secured by X-ray crystallography, was isolated as a constituent of the bryozoan *Bugula neretina* and was found to possess activity against lymphocytic leukemia and ovarian carcinoma. Since the initial isolation work, eleven additional congeners have been extracted from *Bugula neritina*, and one, bryostatin 8, has been isolated from the bryozoan *Amathia convulata*.³ Among the various stereochemical challenges posed by this class of polyacetate-derived natural products is the synthesis of the exocyclic unsaturated esters in rings B and C. In our retrosynthetic analysis, disconnection at the C₁-O acyl and the C₁₆-C₁₇ olefin bonds reveals two synthons of roughly equal complexity where the C₁-C₁₆ portion consists of a C₁-acid and a C₁₆-aldehyde, and the C₁₇-C₂₇ portion consists of a C₁₇ sulfone and a C₂₅ carbinol.

Bryostatin 1 $R = O_2C(CH)_4(CH_2)_2Me$ Bryostatin 11 R = H


Figure 1. Macrocyclic Stereocontrol of Enoate Geometry in Bryostatins 1 & 11.

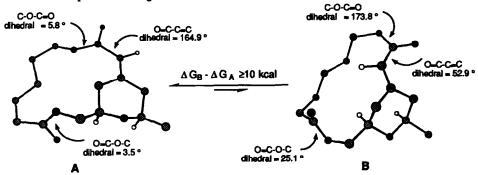
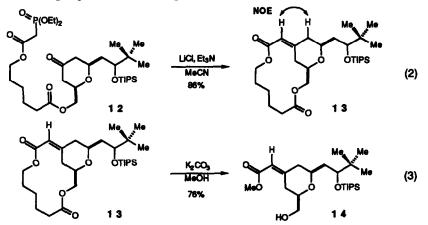
The disposition of the exocyclic ester in ring B relative to the derived oxygen function at C_{16} suggests a plan where a primary alcohol at C_{16} would serve as both an aldehyde precursor and anchor for a tethered phosphonate reagent. Inspection of the C_{17} - C_{27} fragment reveals a similar spatial relationship between the C_{21} enoate and the C_{25} alcohol, so that an analogous strategy could be utilized to control the olefin geometry at C_{21} .⁴ The purpose of the present Letter is to disclose the diastereoselective synthesis of the unsaturated ester at C_{13} in an elaborated intermediate (C_1 - C_{16}) en route to bryostatin 1.⁵ The study documents the use of a tethered phosphonate reagent to effect a highly selective and efficient macroolefination reaction to control remote enoate geometry.

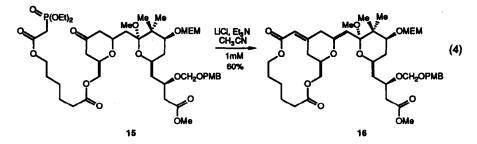
(a) Me₄NBH(OAc)₃, MeCO₂H, MeCN, -40 °C; (b) *p*-MeOC₈H₄CH₂OMe, DDQ, CH₂Cl₂, 23 °C; (c) LiAiH₄, THF, -12 °C; (COCl)₂, DMSO, -Pr₂NEt, CH₂Cl₂, -78 °C; (d) LiCl, -Pr₂NEt, MeCN, 0 °C; (e) 4.5:4.5:1 THF/H₂O/MeCO₂H, 23 °C; (f) +BuOK, THF, -12 °C; (g) Ac₂O, py, DMAP, CH₂Cl₂; (h) NaBH₄, EtOH, 0 °C; TIPSOTI, Et₃N;8 produced as a 1:1-mixture of O-TIPS disastereomers; (i) K₂CO₃, MeOH, 23 °C; (j) PDC, pyridinium trifluoroacetate, CH₂Cl₂, 23 °C; (k) O₃, -78 °C, CH₂Cl₂; Me₂S; LIAIH(OCEt₃)₃, THF, -78 °C.

At the outset, we chose a model substrate that would allow us to adequately define various reaction parameters such as tether length, enolization, and cyclization conditions. Preparation of the model system is illustrated in Scheme 1. Reduction of hydroxyketo ester 1 with Me₄NBH(OAc)₃ (2.5 equiv, -40 °C, MeCO₂H, MeCN)⁶ provided diol 2 (93%, 15:1 diastereoselection). Treatment of 5 with KO/Bu (THF, 0 °C) delivered 6 as an 86:1 diastereomeric mixture of cis/trans-substituted tetrahydropyrans 6 as determined by capillary vapor-phase chromatography. The stereochemistry of the substituted tetrahydropyran was established by n.O.e. experiments on the derived diketone 7; irradiation of the axial C₆ proton (4.33 ppm) led to a 6% enhancement of the axial C₂ proton (4.16 ppm). The illustrated four-step transformation of ketone 6 afforded ketone 9 which as utilized in subsequent experiments as an unresolved mixture of OTIPS diasdtereomers. Treatment of 9 with a dilute stream of ozone in oxygen (-78 °C, CH₂Cl₂) followed by reductive workup (Me₂S, 0 °C) provided an unstable keto-aldehyde that was selectively reduced with LiAlH(OCEt₃)₃⁷ to provide hydroxyketone 10. Acylation of 10 with the tethered phosphonate reagent 11⁸ provided the macrocyclization precursor 12 (eq 1).

Several criteria were examined to determine the optimal tether length: overall thermodynamic stability of the product, stereoelectronic requirements of the two esters within the macrocycle,⁹ and minimization of unfavorable transannular interactions of the tether with the bridging methylene. Dreiding models suggest that a six-carbon tether engenders a fourteen-member ring with low energy conformations which satisfy the criteria delineated for the desired enoate diastereomer. In an effort to quantify the free energy differences of the two enoates, a multiconformational search was executed with the ring-generating molecular mechanics program of Still.¹⁰ The

lowest energy conformers found for each geometrical isomer differed in energy by ~10 kcal/mol (Figure 2). It is reassuring that the more stable diastereomer A bears both esters in the s-cis conformation (O=C-O-C equals 5.8° for the unsaturated ester and 3.5° for the saturated ester); in contrast, the less stable macrocycle **B** possesses the unsaturated ester moiety in the s-trans arrangement (O=C-O-C equals 173.8°) while the saturated ester is perturbed away from the s-cis minimum (O=C-O-C equals 25.1°). In addition, whereas enoate A benefits from some degree of conjugation (O=C-C=C equals 165°), the less stable counterpart **B** lacks this stabilizing feature (O=C-C=C equals 53°). To the extent that these effects are reflected in the transition structure leading to the macrocycle, the diastereoselection is expected to be high.


Figure 2. Lowest Energy Structures for Cis- and Trans-substituted Macrodilactones.

We were gratified to find that treatment of a 1 mM solution of 12 with 33 equiv of lithium chloride and 30 equiv of triethylamine for 36 h afforded the desired macrocycle 13 in 86% yield as a single olefin diastereomer by ¹H NMR spectroscopy (eq 2). The enoate geometry is supported by n.O.e. experiments; irradiation of the vinyl proton at 5.63 ppm resulted in 5% enhancement at the proximal endocyclic methylene protons at 2.15-2.08 ppm. In addition, mass spectrometric analysis (electron impact) confirmed that the desired product, and not high-molecular weight oligomers, had been formed in this transformation. Having served its function, the tether was cleanly removed with K₂CO₃ in methanol (1.2 equiv, 25 °C, 36 h) to afford 14 (eq 3).

A similar cyclization was performed on an advanced intermediate in the synthesis of the C_1 - C_{16} portion of bryostatin 1 (eq 4). Cyclization of 15 under identical conditions (33 equiv LiCl, 30 equiv Et₃N, MeCN, 25 °C, 36 h) afforded the 14-member dilactone 16 in 60% yield as a single olefin diastereomer judged by ¹H NMR

spectroscopy. The lower yields obtained as compared to the model system may be attributed to elimination across C_2 - C_3 by competitive deprotonation of the C_1 ester. Moreover, methanolysis of the resulting macrocyclic dilactone (Li₂CO₃, MeOH) selectively transesterifies the saturated ester and provides a primary alcohol. Oxidation of the C_{16} alcohol provides the C_1 - C_{16} aldehyde for subsequent coupling to the C_{17} - C_{27} subunit.

In conclusion, we have demonstrated that the stereochemistry of the remote unsaturated ester at C_{13} of the bryostatins may be controlled through a macrocyclic olefination reaction. Further studies on the total synthesis of bryostatin 1 will be reported shortly.

Acknowledgment. This research has been supported by the National Institutes of Health (GM-33328). The NIH BRS Shared Instrumentation Grant 1 S10 RR01748-01A1 is also acknowledged for providing NMR facilities.

References and Notes

- (1) National Science Foundation Predoctoral Fellow, 1985-1988.
- (2) Pettit, G. R.; Herald, C. L.; Clardy, J.; Arnold, E.; Doubek, D. L.; Herald, D. L. J. Am. Chem. Soc. 1982, 104, 6846-6848.
- (3) See: Pettit, G. R.; Leet, J. E.; Herald, C. L.; Kamano, Y.; Boettner, F. E.; Baczynskyj, L.; Nieman, R. A. J. Org. Chem. 1987, 52, 2854-2860 and references therein.
- (4) For those members of the bryostatin family bearing a substituent at C₂₀, the geometry of the unsaturated ester at C₂₁ in fact could be expected to be controlled by minimization of A_{1,3} allylic interactions in analogy to literature precedents for substituted cyclohexanones, for example, see: Garner, P.; Ramakanth, S. J. Org. Chem. 1987, 52, 2629-2631.
- (5) As an alternative method we envisioned employing modifications of the asymmetric Wittig reaction reported by Hanessian, see: Hanessian, S.; Delorme, D.; Beaudoin, S.; Leblanc, Y. J. Am. Chem. Soc. 1984, 106, 5754-5756. Since the initiation of this project a similar asymmetric olefination has been reported with (+)-8phenylneomenthyl phosphonoacetate, see: (a) Rehwinkel, H.; Skupsch, J.; Vorbrüggen, H. Tetrahedron Lett. 1988, 29, 1775-1776. (b) Gais, H.-J.; Schmiedl, G.; Ball, W.; Bund, J.; Hellmann, G.; Erdelmeier, I. Tetrahedron Lett. 1988, 29, 1773-1774.
- (6) Evans, D. A.; Chapman, K. T.; Carreira, E. M. J. Am. Chem. Soc. 1988, 110, 3560-3578.
- (7) Krishnamurthy, S. J. Org. Chem. 1981, 46, 4628-4629.
- (8) The tethered phosphonate reagent was prepared by monosilylation of 1,6-hexanediol (NaH, THF, t-BuMe₂SiCl, 0 °C) followed by acylation with diethyl phosphonoacetic acid and two-phase Jones oxidation.
- (9) Wiberg, K. B.; Laidig, K. E. J. Am. Chem. Soc. 1988, 110, 1872-1874.
- (10)The calculations were performed with the MM2 force field on a series of structures generated in the multiconformer mode of the MacroModel program generously provided by Professor W. Clark Still, Columbia University.

(Received in USA 17 May 1990)